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Abstract— Many impulse noise (IN) reduction methods suffer
from two obstacles, the improper noise detectors and imperfect
filters they used. To address such issue, in this paper, a weighted
couple sparse representation model is presented to remove IN.
In the proposed model, the complicated relationships between
the reconstructed and the noisy images are exploited to make
the coding coefficients more appropriate to recover the noise-free
image. Moreover, the image pixels are classified into clear, slightly
corrupted, and heavily corrupted ones. Different data-fidelity
regularizations are then accordingly applied to different pixels
to further improve the denoising performance. In our proposed
method, the dictionary is directly trained on the noisy raw data by
addressing a weighted rank-one minimization problem, which can
capture more features of the original data. Experimental results
demonstrate that the proposed method is superior to several
state-of-the-art denoising methods.

Index Terms— Image denoising, couple sparse representation,
dictionary learning, classified regularization, impulse noise.

I. INTRODUCTION

IMAGE denoising is a fundamental but challenging topic
and plays an important role in the image processing

field [1]. Noisy images have bad characteristics, hence they
can not be directly used for the subsequent image processing,
e.g., segmentation, recognition, and retrieval. One of the most
frequently encountered noise is the impulse noise (IN), which
is mainly introduced into images by imperfect acquisition
processes, transmission errors, and bit errors in
analog-to-digital conversions.

The goal of image denoising is to remove noise as much as
possible while preserve more image details. To suppress IN,
a variety of techniques have been developed, among which
the median filter (MF) [2] is widely used due to its
simplicity. One limitation of MF is its poor denoising
capacity since it just replaces each pixel intensity by
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the local median value. The improvements, such as the
weighted median filter (WMF) [3] and the center weighted
median (CWM) filter [4], still can not suppress IN thoroughly
because they modify all pixels indifferently.

Because the IN just affects partial pixels in images and
leaves the remaining ones untouched, noise detectors can be
designed to identify the noisy pixels before filtering. Then
the noisy pixels are filtered while the clean ones remain
unchanged. Such kind of techniques are usually median- or
mean-type filters based, including the adaptive center weighted
median (ACWM) filter [5], Luo-iterative method [6], the
contrast enhancement filter (CEF) [7], the adaptive switching
median (ASWM) filter [8], the robust outlyingness ratio based
non-local mean (ROR-NLM) [9], and the two-phase detector
based weighted mean filter (TPD-WMF) [10]. These methods
employ the noise detectors and more information from local
neighborhood to estimate the center pixel. Nevertheless, they
still distort some image edges and bring in many artifacts
due to the limited denoising performance of the filters they
used.

In [11], Garnett et al. presented an image statistic
rank-ordered absolute difference (ROAD) to measure the
probability of a pixel to be corrupted by IN. The ROAD is
further incorporated into the bilateral filter to remove mixed
noise. Later, Dong et al. [12] improved this idea and
proposed a more robust statistic rank-ordered logarithmic
difference (ROLD) which is integrated into the edge-
preserving regularization (EPR) [12] for IN reduction.

In recent years, sparse representation (SR) [13] has
been emerging as a powerful tool for handling various
image processing tasks, such as denoising [14], [15], super-
resolution [16]–[18], deblurring [19], inpainting [20], recogni-
tion [21]–[23], etc. The basic idea of SR is that the signal can
be well reconstructed by the linear combination of a few atoms
from an appropriate database called dictionary. For image
denoising, image patches arranged in lexicographic order as
vectors are extracted from the noisy image and served as units
of SR. The reconstructed image is then obtained by averaging
all the overlapping denoised patches for each position. Recent
works [24]–[26] have shown that SR models have good
performance in removing Gaussian noise (GN). Unfortunately,
due to the totally different distributions of GN and IN, the
traditional SR based methods that have fantastic performance
in GN removal always fail in IN reduction.
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In [27], Xiao and Zeng first incorporated noise detectors into
SR model for IN removal. Later, Liu et al. [28] presented a
weighted dictionary learning model for removing mixed noise
(GN mixed with IN), in which the dictionary learning, image
reconstruction, noise detection, and parameter estimation are
integrated into a four-step framework. Recently, by forcing
the distribution of the sparse coding residual more
Gaussian-like, Jiang et al. [29] proposed a weighted encoding
model to handle the mixed noise. Instead of employing noise
detectors, they chose to detect noisy pixels by a soft rule
according to the encoding residual.

Though the SR based methods mentioned above have
achieved encouraging denoising performance for mixed noise,
they may face some troubles when deal with the single
IN removal problem. Firstly, none of those methods takes into
account the IN characteristics, hence many image details may
be lost when they are used to remove single IN. Secondly,
since just the clean pixels are used for sparse coding, these
methods may fail in the high noise level environment, where
the number of useful clean pixels are limited. Finally, the
values of clean pixels are also changed in the recon-
struction stage, while for IN removal, leaving the clean
pixels unchanged can significantly improve the quality of
reconstructed image.

To address the above concerns, in this paper we proposed a
Weighted Couple SR (WCSR) model for IN removal. In our
proposed method, a weight matrix is incorporated to classify
the pixels into three categories and to subtly determine the
contribution of each pixel offered in the sparse coding stage,
which makes the SR model more suitable for IN removal.
Besides, the reconstructed and noisy images are coupled in
sparse coding to explore the complicated relationships between
them. More specifically, because the reconstructed image
contains less noise and share the similar scenario with the
original noise-free one, it is used in our method to compensate
the lost information in the noisy image. Coupled coding of the
reconstructed and noisy images yields the sparse coefficients
much closer to those of the underlying degradation-free image
than the coefficients that would result from coding of the
single noisy image. Therefore, the sparse coding coefficients
produced by the proposed WCSR model are more appropriate
for reconstruction. The contributions of this paper are listed
as follows.

• The cleanliness of each pixel is measured by a fuzzy
membership function, which is more suitable for IN
since the inherent feature of IN is uncertainty [30].
Moreover, the weight determines how much contribution
each pixel should offer in the sparse coding stage, which
can suppress the effects of outliers.

• The WCSR model simultaneously codes the noisy and
the reconstructed images to explore the complicated
relationships between them, which helps to improve the
reconstruction accuracy.

• All the image pixels are classified into three categories,
and different categories are assigned with different
regularizations according to their characteristics. This
preserves more image details and makes the proposed
model more robust to outliers.

• To search the best basis to represent the noisy image,
we propose a novel dictionary learning method to train
the dictionary directly on the raw data with outliers. The
dictionary is learned by jointly updating the dictionary
atoms and the corresponding coefficient vectors, which
is convergent and efficient.

The remainder of this paper is organized as follows.
In Section II, the noise detection rule and the proposed
weighted sparse-land model are described in detail.
Experimental results are shown in Section III. Finally,
section IV reaches a conclusion.

II. THE PROPOSED ALGORITHM

In this section, we first introduce the IN model and the
detection rule. Then we describe in detail the proposed
WCSR model and its solutions. Throughout the paper, we use
the uppercase and lowercase letters to denote vectors (images)
and entries (pixels), respectively.

A. Impulse Noise Model

Let xi, j and oi, j denote the (i, j)-th pixel values in the
corrupted and clean images, respectively. Supposing the pixel
values are bounded by mmin and mmax , the IN model is
described as,

xi, j =
{

oi, j , with probability 1 − p,

ui, j , with probability p,
(1)

where ui, j is the IN value which is independent with the
original pixel value oi, j , and p is the IN probability. Actu-
ally, the pixel xi, j in IN corrupted image can be viewed
as a Bernoulli random variable (e.g., xi, j ∼ Bern(p)) with
outcomes {ui, j , oi, j }. There are two kinds of IN: salt and
pepper noise (SPN) and random-valued impulse noise (RVIN).
For SPN, ui, j equals to mmin or mmax , while for RVIN,
mmin ≤ ui, j ≤ mmax . In 8-bit grayscale images, mmin = 0
and mmax =255.

B. Outlier Detection

In our approach, we use two different rules for SPN and
RVIN detection, namely “hard rule” for the former and “soft
rule” for the latter. The reason is that SPN corrupted pixel
values are extremely large or small, which can be easily
detected. It is sufficient to detect them in a “hard rule”. While
for RVIN, the noisy pixel values may not be so different
from those of corresponding clean pixels, hence it is more
appropriate to detect them in a “fuzzy way” [30].

The adaptive median filter (AMF) [31] is used in our
approach to detect SPN. For simplicity, suppose Y is the
filtered result by a median-type filter, the detection result of
AMF is recoded in a binary matrix W ,

wi, j =
{

0; xi, j = yi, j and yi, j ∈ {0, 255}
1; otherwise

(2)

in which wi, j = 0 means the pixel xi, j be corrupted by noise,
while wi, j = 1 denotes xi, j be clean.
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For RVIN, the “soft detection rule” is achieved by
introducing a fuzzy membership function on the ROLD
values of the noisy image. The ROLD is a local image
statistic describing the noisy pixels based on the assumption
that the absolute differences between the noisy pixels and
their neighbors are relatively larger than those between the
clean ones and their neighbors. Readers are referred to [11]
for more details of ROLD. Here, we choose the exponential
function for simplicity,

wi, j =

⎧⎪⎪⎨
⎪⎪⎩

1; RO L D(xi, j ) ≤ τ1

exp

(
− (α−RO L D(xi, j ))

2

σ 2

)
; τ1 < RO L D(xi, j ) ≤τ2

0; RO L D(xi, j ) > τ2

(3)

where 0 ≤ wi, j ≤ 1 denotes the cleanliness of pixel xi, j .
Especially, wi, j = 1 means xi, j to be a clean pixel and
wi, j = 0 indicates xi, j to be a noisy one. We set the
parameter σ = 1 in our method.

In this paper, all the pixels in noisy image are divided into
three categories based on the fuzzy weights, namely, clean,
slightly corrupted, and heavily corrupted pixels. For simplicity,
we use C = {(i, j)|wi, j = 1}, S = {(i, j)|0 < wi, j < 1}, and
H= {(i, j)|wi, j = 0} to denote the coordinates of these three
classes, respectively. In the following, we will denote XC , XS ,
and XH as the set of clean pixels, the set of slightly corrupted
pixels, and the set of heavily corrupted pixels, respectively.
Obviously, XS is null for SPN corrupted images.

C. Weighted Sparse-Land Model

For an image contaminated by IN, not all the pixel values
are changed, and there are still some clean pixels that are
useful. One can use these clean pixels to reconstruct the
original image. For sparse-land model, we should exclude the
noisy pixels and restrain the sparse coding on these clean ones.
This can be achieved by introducing a weight matrix into the
SR model [32],{

α̂i, j
} = arg min

αi, j
‖Ri, j W ⊗ (

Ri, j X − Dαi, j
) ‖2

2

s.t . ‖αi, j ‖0 ≤ L (4)

where the symbol ⊗ denotes Hadamard (element-wise) prod-
uct; X is the corrupted image with size of

√
N × √

N . W is
a weight matrix generated by a noise detector, and with the
same size of X ; D ∈ Rn×K (n < K ) is a redundant dictionary,
whose each column represents an atom; Ri, j denotes a n × N
matrix that is used to extract the (i, j)-th

√
n × √

n patch
(reshaped as a vector) from the image; α is the representation
coefficient expected to be sparse, that is, just a few entries
in α are nonzero; L is the sparse ratio.

The above model is called weighted sparse representa-
tion (WSR). The basic assumption of SR based denoising
framework is that the noisy and original images share the same
coefficients on a certain dictionary. Hence once the coeffi-
cients are calculated from the noisy patches, the reconstructed
patches can be estimated by the product of the dictionary and
the coefficients. The restored image is then directly obtained

Fig. 1. PSNR values of recovered images by using WSR (Eq. (4)) and
WCSR (Eq. (6)). The x-coordinate denotes the image index shown in Fig. 2:
1: lena, 2: pepper, 3: barbara, 4: boat, 5: bridge, 6: house, 7: pentagon,
8: F16.

by averaging all the overlapping reconstructed patches,

X̂ =
⎛
⎝∑

i, j

RT
i, j Ri, j

⎞
⎠

−1

·
∑
i, j

RT
i, j Dαi, j (5)

Though WSR performs well in suppressing most of the IN,
it has two main shortcomings. First, since it uses clean pixels
for sparse coding, model (4) will be failed when the noise
density is high, where the number of clean pixels can be
used is limited. Second, the weight matrix in (4) generated
by the noise detector is not always credible, especially for
RVIN corrupted image. Some noisy pixels may be judged
as clean ones and used for sparse coding. This will cause
severe distortion of the sparse coefficients and make them not
able to accurately reconstruct the noise-free image. Inspired by
the fact that the reconstructed image contains less noise but
the same scenario of the original noise-free one, a weighted
couple SR (WCSR) model is presented to simultaneously
encode the reconstructed and the noisy images. In WCSR, the
reconstructed image is used to compensate the lost information
in the noisy one, which drags as much as possible the sparse
coefficients back to those that would generated from coding
of the noise-free image. Hence the coefficients generated by
the WCSR are more appropriate for image reconstruction. The
WCSR model is formulated as follows,{

α̂i, j
}

= arg min
αi, j

{∑
i, j

1

2
‖Ri, j W ⊗ (Ri, j X − Dαi, j )‖2

2

+
∑
i, j

1

2
‖Ri, j (I − W ) ⊗ (Ri, j Y − Dαi, j )‖2

2

}
s.t . ‖αi, j ‖0 ≤ L (6)

where Y denotes the estimation of X , I is a matrix with proper
size, and its entries all are ones.

To verify the superiority of WCSR (Eq. (6)) over WSR
(Eq. (4)), we utlize the two models to restore all the tested
images (shown in Fig. 2) corrupted by RVIN with 40%
noise density, respectively. The dictionary D is chosen as
DCT dictionary. Fig. 1 shows the PSNR values of
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Fig. 2. Test images. From left to right: lena, pepper, barbara, boat, bridge, house, pentagon, and F16.

restoration results. From this figure, we can see that,
the results generated by the WCSR are better than those of
the WSR for all the tested images. This owes to the fact that
the information of reconstructed image utilized in the sparse
coding helps to generate more appropriate coefficients to
estimate the noise-free image.

Inspired by the fact that the global prior knowledge
can further improve the denoising performance of
SR model [14], we choose to minimize the following
regularization term

‖W ⊗ (Y − X)‖2
2 (7)

as the global prior. It can been see that (7) forces the
estimations close to the clean pixels, that is, the pixels in the
reconstructed image should approximate to these correspond-
ing clean ones as much as possible. This preserves more image
details and improves the quality of final output.

Though the l2-norm in (7) makes the final model well
in keeping the image details, it is sensitive to the noise
detector that generates the weight matrix, especially when
the noise level is high. To enhance its robustness, one thing
we can do is to introduce a l1-norm penalty term into the
SR model, since l1-norm has been demonstrated more suitable
for IN than l2-norm [33]. According to [33], minimizing of
l1-norm involves an implicit detection of IN which is very
crucial in IN reduction.

In [27], Xiao et al. introduced the following l1-term on noise
candidates into SR model to make it more robust to outliers,∑

(i, j )∈N
‖yi, j − xi, j ‖1 (8)

where yi, j denotes the (i, j)-th estimation, N is the index
set of all the noisy pixels. Minimization of (8) means that
the estimations should close to noisy pixels under the rule
of l1-norm data fidelity.

One disadvantage of (8) is that all the noisy pixels are
covered in the l1-term. Unfortunately, the heavily corrupted
pixels have no relationships with the corresponding original
clean ones, and their use in the loss function can only be harm-
ful. On the contrary, for the slightly corrupted pixels, although
their values are also changed, the biases are relatively smaller,
and the original pixel values can still be mined by the l1-norm.
Inspired by this, we choose to use the following l1-term,∑

(i, j )∈S
‖(1 − wi, j )

(
yi, j − xi, j

) ‖1 (9)

Note that the difference between (9) and (8) is that in (9) just
the slightly corrupted pixels are considered in l1-norm, and
there is a weight determining how much contribution each
pixel should offer.

Combining the WCSR with (7) and (9), we present the
following IN removal model which is named as WCSR-l2l1,

(α̂, D̂, Ŷ )

= arg min
α,D,Y

{∑
i, j

1

2
‖Ri, j W ⊗ (

Ri, j X − Dαi, j
) ‖2

2

+
∑
i, j

1

2
‖Ri, j (I − W ) ⊗ (

Ri, j Y − Dαi, j
) ‖2

2

+ λ1

2
‖W ⊗ (Y − X)‖2

2

+ λ2

∑
(i, j )∈S

‖(1 − wi, j )(yi, j − xi, j )‖1

}

s.t . ‖αi, j ‖0 ≤ L (10)

where λ1 and λ2 are two control parameters. By introducing
another matrix W̄ with each entry w̄i, j =(1−wi, j )·sign(wi, j ),
where sign is the symbolic function. Model (10) is rewritten as,

(α̂, D̂, Ŷ )

= arg min
α,D,Y

{∑
i, j

1

2
‖Ri, j W ⊗ (

Ri, j X − Dαi, j
) ‖2

2

+
∑
i, j

1

2
‖Ri, j (I − W ) ⊗ (

Ri, j Y − Dαi, j
) ‖2

2

+ λ1

2
‖W ⊗ (Y − X)‖2

2 + λ2‖W̄ ⊗ (Y − X)‖1

}
s.t . ‖αi, j ‖0 ≤ L . (11)

The proposed WCSR-l2l1 model that aims to optimize
three variables simultaneously is not easy to solve. A tractable
optimization problem can be obtained by relaxing (11). Fixed
the other two variables, the optimization of the third one
changes into a convex subproblem, which admits an efficient
solution.

D. Alternating Minimization

In this subsection, we introduce an alternating minimization
method to solve the proposed model. The three variables
α, D, and Y can be updated alternatively by solving three
optimization subproblems.

(1) Sparse coding: given Y, D, the coefficient α is calculated
by{
α̂i, j

}
= arg min

α

{∑
i, j

1

2
‖Ri, j W ⊗ (

Ri, j X − Dαi, j
) ‖2

2

+
∑
i, j

1

2
‖Ri, j (I − W ) ⊗ (

Ri, j Y − Dαi, j
) ‖2

2

}

s.t . ‖αi, j ‖0 ≤ L (12)
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by introducing the following auxiliary variables,

R̃i, j W̃ =
(

Ri, j W
Ri, j (I − W )

)
, R̃i, j Ỹ =

(
Ri, j X
Ri, j Y

)
, D̃ =

(
D
D

)
(13)

(12) is rewritten as,{
α̂i, j

} = arg min
αi, j

∑
i, j

∥∥∥ R̃i, j W̃ ⊗
(

R̃i, j Ỹ − D̃αi, j

)∥∥∥2

2

s.t . ‖αi, j ‖0 ≤ L (14)

Eq. (14) is a weighted sparse coding problem due to the
existence of the weight matrix and the Hadamard product
operator. In [27], forcing the weight to be a binary matrix,
Xiao and Zeng, et al. solved such a problem by using
the strategy of SR based image inpainting, in which the
OMP algorithm is chosen and slightly changed by projecting
only the clean pixels on the dictionary. Unfortunately, that
strategy no longer works for our problem because the
weight W̃ in (14) is a fuzzy weight matrix with each entry
0 ≤ w̃i, j ≤ 1. To solve Eq. (14), we derive each αi, j by a
minimization problem as follows,

α̂i, j = arg min
α

∥∥∥Q(Ri, j Ỹ ) − QD̃αi, j

∥∥∥2

2
s.t . ‖αi, j ‖0 ≤ L (15)

where Q = diag
(
R̃i, j W̃

)
is a diagonal matrix. Replaced by

ȳi, j = Q · (Ri, j Ỹ ) and D̄ = Q · D̃, the problem is transformed
into,

α̂i, j = arg min
αi, j

∥∥ȳi, j − D̄αi, j
∥∥2

2 , s.t . ‖αi, j ‖0 ≤ L (16)

which is a sparse coding problem of projecting the signal ȳi, j

on the new dictionary D̄, and can be efficiently solved by
OMP algorithm.

(2) Dictionary learning: given Y and α, the dictionary D is
updated as

D̂ = arg min
D

∑
i, j

1

2
‖Ri, j W ⊗ (

Ri, j X − Dαi, j
) ‖2

2

+
∑
i, j

1

2
‖Ri, j (I − W ) ⊗ (

Ri, j Y − Dαi, j
) ‖2

2 (17)

Note that there are two dictionaries, one is for representing
the reconstructed image Y , the other is for decomposing
the noisy image X . Indeed, (17) suggests we train the two
dictionaries simultaneously by combing the two dictionaries
as a new one, Dnew = (

DT , DT
)T

, however, this will be time
consuming. Actually, we experimentally found that it works
well if we manually set the two dictionaries equally and just
train one on X . This is because Y is the estimation of X ,
then the trained dictionary D̂ can also reduce the residual term∑

i, j
1
2‖Ri, j (I −W )⊗(Ri, j Y − D̂αi, j )‖2

2. Hence the dictionary
is trained as,

D̂ = arg min
D

∑
i, j

‖Ri, j W ⊗ (
Ri, j X − Dαi, j

) ‖2
2. (18)

Due to the existence of weight matrix, the above problem
can not be directly solved by the K-SVD [34] algorithm.
Denote by WB = [Ri, j W ] ∈ R

n×N , XB = [Ri, j X] ∈ R

n×N ,

and A = [α]i, j ∈ R

K×N , where i, j ∈ 1, 2, · · · ,
√

N , (18) is
rewritten as,

D̂ = arg min
D,‖dk‖=1

‖WB ⊗ (XB − D A)‖2
2 (19)

A natural choice is to update one atom dk of D with other
atoms fixed each time,(

d̂k, α̂
k
X

) = arg min
αk

X ,‖dk‖2
2=1

‖WB ⊗
(

Ek − dkα
k
X

)
‖2

2 (20)

where αk
X is a row vector composed by all the non-zero

entries of the k-th row of coefficient matrix A. Ek =
XB −∑K

l=1,l �=k dlα
l
X is the residual error corresponding to the

training samples that currently use the dk . This is a weighted
rank one matrix approximation problem, which cannot be
directly solved via KSVD but can be solved by the iterative
weighted KSVD algorithm [35], [36]. However, the weighted
KSVD can not work for the unweighted case when W = τ I
is a scalar matrix [28].

By adopting the alternating optimization strategy [37], we
introduce a dictionary learning method to efficiently approxi-
mate the solution of (20). To update dk and αk

X , we have the
following property.

Property 1: For a multivariate function F(d, α) = ‖W ⊗
(E − dα)‖2

F , the minimum point (d̂, α̂) is calculated as

d̂ = �−1 ·(W̃ ⊗EαT ), and α̂ = dT (W̃ ⊗E)·�−1, where W̃ =
W ⊗ W , � = diag(W (α ⊗ α)T ), and � = diag

(
W̃ T · (d · d)

)
.

Proof: See Appendix.
According to Property 1, the solutions of (20) are given by⎧⎨

⎩
d̂k = �−1 ·

((
W̃ ⊗ Ek

) · (αk
X )T

)
α̂k

X = (dk)
T ·

(
W̃ ⊗ Ek

)
· �−1

(21)

The convergence is guaranteed and achieved by a single
iteration [37].

(3) Image estimation: given D and α, the reconstructed
image Y can be estimated from the following minimization
problem,

Ŷ
= arg min

Y

{∑
i, j

1

2
‖Ri, j (I − W ) ⊗ (

Ri, j Y − Dαi, j
) ‖2

2

+ λ1

2
‖W ⊗ (Y − X)‖2

2 + λ2‖W̄ ⊗ (Y − X)‖1

}
(22)

By introducing another variable U = Y − X , the above
objective function is replaced by,

G(U) =
∑
i, j

1

2
‖Ri, j (I − W ) ⊗ (Ri, j U + Ri, j X − Dαi, j )‖2

2

+λ1

2
‖W ⊗ U‖2

2 + λ2

∑
‖W̄ ⊗ U‖1 (23)

calculating the derivative of G(U) with respect to U , and
considering the properties of Hadamard product, we have

∂G(U)

∂U
= ((I − W ) ⊗ (I − W )) ⊗ (M ⊗ U + M ⊗ X − Z)

+ λ1(W ⊗ W ) ⊗ U + λ2(W̄ ⊗ W̄ ) ⊗ sign(U)

(24)
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where M = ∑
i, j RT

i, j Ri, j and Z = ∑
i, j RT

i, j Dαi, j . Here both
M and Z have their own physical meanings, e.g., M denotes
the overlapping weight matrix, and Z is the estimation via the
dictionary without averaging.

Setting the derivative to zero, (24) can be solved in an
element-wise manner. Let ui, j , mi, j , and zi, j be the entry
of U , M , and Z , respectively. Considering each (i, j)-th
pixel, ui, j can be calculated according to the following three
cases.

Case 1: If the (i, j)-th pixel is a clean one, that is, the
weight for this pixel is wi, j = 1, then according to (24) the
solution is,

ui, j = 0. (25)

Case 2: If the (i, j)-th pixel is a heavily corrupted one,
which means the corresponding weight is wi, j = 0, according
to (24) we have,

ui, j = zi, j

mi, j
− xi, j . (26)

Case 3: If the (i, j)-th pixel is a slightly corrupted one, and
the corresponding weight is 0 < wi, j < 1. Then the solution
can be obtained by the following equation,

∂G(ui, j )

∂ui, j
= (

1 − wi, j
)2 (

mi, j ui, j + mi, j xi, j − zi, j
)

+ λ1w
2
i, j ui, j + λ2wi, j sign(ui, j )

= 0. (27)

According to [40], (27) has a closed form formula for the
optimal solution for ui, j , which is a shrinkage operation,

ui, j = S( f (xi, j , zi, j ), vi, j ) (28)

where S is the soft threshold operator, defined as,

S(t, λ) =

⎧⎪⎪⎨
⎪⎪⎩

t − λ; t > λ

0; −λ ≤ t ≤ λ

t + λ; t < −λ

(29)

and f (xi, j , zi, j ) and vi, j are as follows,

f (xi, j , zi, j ) =
(
1 − wi, j

)2 (
zi, j − mi, j xi, j

)
(
1 − wi, j

)2
mi, j + λ1w

2
i, j

(30)

vi, j = λ2wi, j(
1 − wi, j

)2
mi, j + λ1w

2
i, j

(31)

Note that Y = U + X , then the estimated value for the (i, j)-th
pixel is given by,

yi, j =

⎧⎪⎪⎨
⎪⎪⎩

xi, j ; if wi, j = 1
zi, j
mi, j

; if wi, j = 0

xi, j + S( f (xi, j , zi, j ), vi, j ); if 0 < wi, j < 1

(32)

The proposed model in (11) will become much simpler
when deal with SPN. For SPN corrupted images, there is
no entry between 0 and 1 in the weight matrix W because
each entry wi, j = 0 or 1, then the proposed model in (11) is

Algorithm 1 The Proposed Algorithm for IN Removal

simplified into,

Ŷ = arg min
Y,α

{∑
i, j

1

2
‖Ri, j (I − W ) ⊗ (

Ri, j Y − Dαi, j
) ‖2

2

+
∑
i, j

1

2
‖Ri, j W ⊗ (

Ri, j X − Dαi, j
) ‖2

2

+ λ1

2
‖W ⊗ (Y − X)‖2

2

}
s.t . ‖αi, j ‖0 ≤ L

After some similar manipulations, the reconstructed image
can also be calculated pixel by pixel,

yi, j =
{

xi, j ; if wi, j = 1
zi, j
mi, j

; if wi, j = 0
(33)

From (32) and (33), one can see that in the (i, j)-th position
without IN (wi, j = 1), the pixel value is reasonably unchanged
and this is crucial in preserving image details. On the other
hand, if the (i, j)-th pixel is heavily corrupted (wi, j = 0), the
estimated value is calculated from the information around it.
Finally, if the (i, j)-th position is just a slightly corrupted pixel
(0 < wi, j < 1), the estimated value is calculated from both
the neighborhood suggested value and the noisy pixel itself,
shrinking the neighborhood suggested value toward xi, j .

E. Iterative Denoising Algorithm

For IN removal, we iteratively apply the WCSR-l2l1 model
to improve the denoising performance. That is, the output
of current iteration is used as the input of next iteration.
In each iteration, the weight matrix is updated via (2) for SPN
and (3) for RVIN based on the current input image.

In our iterative denoising method, the initial image for
Y in (12) is reconstructed from (4) and (5), and the initial
dictionary is chosen as discrete cosine transform (DCT). The
details of the proposed iterative IN removal algorithm is
summarized in algorithm 1.

In algorithm 1, instead of updating the dictionary D each
time, we choose to update it every q (e.g., q = 2) iterations
to save the computation time. In step 7, the two thresholds
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TABLE I

COMPARISON OF RESTORATION RESULTS IN PSNR AND SSIM FOR IMAGES CORRUPTED BY SPN

τ1 and τ2 are decreasing along with the increase of iteration
number to detect more potential outliers [12], and p is the
noise density estimated as p = 1

N

∑
i, j

(
1 − wi, j

)
.

III. SIMULATION RESULTS

In this section, experiments are conducted and compared
with several existing methods to assess the noise reduction
capability of the proposed algorithm. Simulations are carried
out on various standard test images corrupted by RVIN or
SPN. Fig. 2 shows some examples of the original noise-free
images.

A. Implementation and Parameter Setting

Our proposed method can be implemented according
to Algorithm 1. There are some parameters should be
predetermined: two control parameters λ1, λ2, thresholds
τ1, τ2, and the maximum iteration number kmax .

By our extensive experiments, the restoration results are not
so sensitive to the two control parameters. The parameter pair
chosen from λ1 ∈ [40, 65] and λ2 ∈ [560, 780] can achieve
satisfactory results. Here, we set λ1 = 60 and λ2 = 780
in all our experiments. Experimentally, the initial values of
τ1 and τ2 are set as τ1 = 3 and τ2 = 3.8 for all the tested
images except for barbara image, which is rich in textures
and requires relative larger thresholds. Hence, we set τ1 = 4
and τ2 = 5 for barbara images with low noise densities
(e.g., 40% and 50%), while τ1 = 3.5 and τ2 = 4.5 for the
high noise case (e.g., 60%).

The stopping criterion is very important for an iterative
algorithm because iterative filtering should be stopped before
it begins to severely destroy image details. We choose to stop
the iterative filtering when

‖Ycur − Ypre‖2
2

‖Ypre‖2
2

≤ η, (34)

where η = 0.003 for SPN and 0.01 for RVIN; Ycur and
Ypre represent the outputs of current and previous iterations,
respectively. For the maximum iteration number, we set
kmax = 6.

For sparse coding, the 8 × 8 patches with an overlap of
6 pixels between adjacent patches are extracted from the noisy
image. The dictionary size is chosen as D ∈ R64×256, which
means there are totally 256 atoms in the dictionary. The sparse
ratio is set as L = 5.

B. Comparison of Image Restoration

The PSNR (peak signal to noise ratio) and SSIM (structural
similarity) [41] are used to quantitatively evaluate the qualities
of restored results. Generally, the higher PSNR and SSIM
values indicate better qualities of the restored images.

For SPN removal, we compare our method with
some recently developed methods, namely, UTMF [38],
IBDND [39], and WESNR [29]. For RVIN reduction, the pro-
posed method is compared with ACWM [5], Luo-iterative [6],
CEF [7], ASWM [8], ROR-NLM [9], l1-l0 method [27],
ROLD-EPR [12], and WESNR [29]. The codes of ROR-NLM,
ROLD-EPR, and WESNR are provided by the authors, while
other algorithms are implemented with the optimal parameters
and iterations suggested by the original papers.

Table I and II list the PSNR and SSIM values from the
methods for all the tested images with different noise densities
about the SPN and RVIN, respectively. In both tables, the
best values are marked in bold for convenient comparisons.
From Table I, it is clear to observe that the proposed method
achieves competitive or higher PSNR scores in comparison
with the three state-of-the-art SPN removal methods. Though
the SSIM values of our method are slightly less than the best
ones in three cases (house image with 50% SPN, F16 and
bridge images with 80% SPN), our method outperforms other
methods in all the rest cases.



CHEN et al.: WCSR WITH CLASSIFIED REGULARIZATION FOR IN REMOVAL 4021

TABLE II

COMPARISON OF RESTORATION RESULTS IN PSNR AND SSIM FOR IMAGES CORRUPTED BY RVIN

Fig. 3. Results of different algorithms in restoring the test barbara image corrupted by SPN with 50% and 80% noise densities respectively. Top row: 50%
noise, bottom row: 80% noise. (a) Noisy image, (b) UTMF, (c) IBDND, (d) WESNR, (e) proposed; (f) Noisy image, (g) UTMF, (h) IBDND, (i) WESNR,
(j) WCSR-l2l1. Please zoom into pdf file for a detailed view.

From Table II, it is obvious to see that our proposed method
generates the best results almost for all the tested images
with different noise densities. Actually, in Table I and II,
the proposed method obtains the highest averaged PSNR and
SSIM values for all the tested images with different noise
densities. This demonstrates that our method is more robust
for images corrupted by IN with different noise levels.

The enlarged parts of recovered barbara images with 50%
and 80% noise densities by all the tested methods are shown
in Fig. 3 to give a visual impression.1 From this figure, we can

1More restored results can be found in the website http://
www.cis.umac.mo/cybernetics/WCSR-L2L1/DenoisedResults.htm. Matlab
code available upon email request (yb27408@umac.mo or
lichenghnu@gmail.com)
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Fig. 4. Results of different algorithms in restoring lena image corrupted by 40% RVIN: (a) Noisy image, (b) ACWM, (c) Luo’, (d) ASWM, (e) l1 − l0
(f) CEF; (g) ROR-NLM, (h) ROLD-EPR, (i) WESNR, (j) WCSR-l2 l1. Please zoom into pdf file for a detailed view.

Fig. 5. Results of different algorithms in restoring pepper image corrupted by 50% RVIN: (a) Noisy image, (b) ACWM, (c) Luo’, (d) ASWM, (e) l1 − l0
(f) CEF; (g) ROR-NLM, (h) ROLD-EPR, (i) WESNR, (j) WCSR-l2 l1. Please zoom into pdf file for a detailed view.

see that the SR based methods outperform filter based methods
in reduction of SPN. The UIMF and IBDND methods not only
cannot completely remove the SPN, but also bring in many
artifacts. On the contrary, the WESNR produces much better
results. However, it still lost lots of image details and destroy
the edges, especially when the noise density is high, where
the number of clean pixels can be used for sparse coding is
limited. The results generated by the proposed method have
very good visual qualities. Even though the noise density
is 80%, our method still can remove almost all the SPN and
preserve most of the image details.

Fig. 4 and 5 list the enlarged parts of the restored
barbara and pepper images corrupted by 40% and 50% RVIN,
respectively. From these two figures, we can see that

other methods, except for l1-l0, ROR-NLM, ROLD-EPR, and
WESNR, show very bad performance in suppressing RVIN.
By comparison, ROR-NLM generates relative better results,
nevertheless, it blurs the outputs and brings in some artifacts.
Though l1-l0 and WESNR can removal most of noise, the
results are somehow over filtered. This is because none of them
takes into account the IN characteristics in sparse coding or
reconstruction. The results produced by ROLD-EPR method
verify that this method indeed has a good capability of pre-
serving image edges. However, there are still some noticeable
noise unremoved due to the imperfect filtering technique it
used. In contrast, the results generated by our method show
very good visual qualities, which illustrates that the proposed
method is very effective in reduction of IN. Both the noise
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Fig. 6. The trained dictionaries by different methods: The first column:
trained dictionaries for barbara image with 50% SPN (shown in Fig. 3(a)).
The second column: trained dictionaries for barbara image with 40% RVIN
(shown in Fig. 4(a)). (a) the proposed dictionary learning method, (b) the
proposed dictionary learning method, (c) K-SVD, (d) K-SVD.

are removed thoroughly and the image details (e.g., edges and
textures) are well preserved. Especially for the images rich in
textures (e.g., barbara image in Fig. 4), the superiority our
method is more obvious.

Fig. 6 shows the dictionaries trained by our proposed
dictionary learning method and the K-SVD [34] algorithm for
the barbara image corrupted by 50% SPN and 40% RVIN,
respectively. From this figure, one can see that, compared with
those trained from K-SVD, the two dictionaries learned by the
proposed method are less noisy and contains more features
of barbara image (e.g., the texture), hence they are more
appropriate to reconstruct the original image.

C. Effectiveness of the L2-Norm and L1-Norm

In the proposed model, the l2-norm is used to make the
reconstructed pixels approach to the corresponding clean ones
to preserve more image details. The l1-norm is designed
to regularize the IN corrupted pixels, which improves the
robustness of the final model. Both of them are very important
in the proposed WCSR-l2l1 model.

To further verify the effectiveness of the l1-norm and
l2-norm in (11). We implement two variants of the final
denoising model. Let the “WCSR-l2” denote the IN removal
method using SR and l2-norm, which solves the following
minimization problem,

(α̂, D̂, Ŷ )

= arg min
α,D,Y

{∑
i, j

1

2
‖Ri, j W ⊗ (

Ri, j X − Dαi, j
) ‖2

2

+
∑
i, j

1

2
‖Ri, j (I − W ) ⊗ (

Ri, j Y − Dαi, j
) ‖2

2

+ λ1

2
‖W ⊗ (Y − X)‖2

2

}
, s.t . ‖αi, j ‖0 ≤ L .

Fig. 7. PSNR values of recovered images by using WCSR-l2 , WCSR-l1,
and WCSR-l2l1. The x-coordinate denotes the image index shown in Fig. 2:
1: lena, 2: pepper, 3: barbara, 4: boat, 5: bridge, 6: house, 7: pentagon,
8: F16.

The other variant denoted by “WCSR-l1” intends to remove
IN by minimizing

(α̂, D̂, Ŷ )

= arg min
α,D,Y

{∑
i, j

1

2
‖Ri, j W ⊗ (

Ri, j X − Dαi, j
) ‖2

2

+
∑
i, j

1

2
‖Ri, j (I − W ) ⊗ (

Ri, j Y − Dαi, j
) ‖2

2

+ λ2‖W̄ ⊗ (Y − X)‖1

}
, s.t . ‖αi, j ‖0 ≤ L .

The two variants can be implemented by modifying
Algorithm 1 slightly. They were then used to recover the
images shown in Fig. 2 corrupted by 40% RVIN. The
restored results were compared to those of WCSR-l2l1 and
the PSNR values were plotted in Fig. 7.

From Fig. 7, one can see that WCSR-l2 gains higher PSNR
scores than WCSR-l1, which indicates l2-norm plays a more
important role compared to l1-norm in the final model. This is
because that l2-norm forces the reconstructed pixels approach
to the clean ones, which preserves more details of the original
image, while l1-norm just makes the model robust to outliers.
In contrast, the WCSR-l2l1 obtains the best performance than
the WCSR-l2 and WCSR-l1. This means that both the l2-norm
and l1-norm in the final model are necessary and meaningful.
Without any of them, the denoising performance of the final
model will be weakened.

D. Running Time

The main computation cost of our proposed algorithm
comes from the sparse coding and dictionary learning sub-
problems. The reason is that both these two subproblems
adopt the OMP algorithm to calculate the coefficients and the
OMP is time-consuming. As a result, our method is somehow
slower than some other two-phase methods [9], [12]. More
specifically, for the 256 × 256 house image, it costs about
48 seconds CPU time for each outer iteration of our proposed
method by using our unoptimized Matlab codes on a computer
equipped with 3.40 GHz CPU.

It is worth to note that there are several ways to speed
up the proposed algorithm. On the one hand, the fast split
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or greedy algorithms can be used instead of OMP to solve
the l0 minimization problem more effectively. On the other
hand, the proposed method can be parallelized and run on a
more powerful GPU machine to further reduce the running
time.

IV. CONCLUSION

In this paper, we propose a weighted couple sparse represen-
tation based algorithm to remove IN in images. In summary,
a weight matrix is introduced to describe the cleanliness
of a pixel and to determine the contribution of each pixel
offered in the sparse coding stage. The noisy and reconstructed
images are coupled in the SR model where the reconstructed
image is used to compensate the lost information in the
noisy image and to make the coefficients more appropriate
to reconstruct the noise-free image. To further improve the
denoising performance, the pixels are classified into three
categories, and different types of pixels are assigned with
different regularizations. Besides, the dictionary is trained
directly on the raw data to capture more features of the
original image. Extensive experiments demonstrate that the
proposed method achieves better performance in reduction of
IN compared with several state-of-the-art denoising algorithms
with respect to both the quantitative measurements and the
visual effects.

It is worth to extend the proposed method for color
image restoration, considering the correlations among R (red),
G (green), and B (blue) channels. Besides, integrating the
non-local self similarity priors [42], [43] into the weighted
SR model may preserve more image details and texture
information. This can be a good direction of future work to
produce much higher quality outputs.

APPENDIX

PROOF OF PROPERTY 1

Proof: The dictionary atom updating is reformulated as

d̂ = arg min
d

F(d, α) (35)

This can be achieved by calculating the derivative of F(d)
with respect to d , and set it to 0.

∂ F(d, α)

∂d
= (W ⊗ W ) ⊗ (E − dα)αT = 0 (36)

(36) leads to

W̃ ⊗ (dα)αT = W̃ ⊗ EαT (37)

where W̃ = W ⊗ W , and the superscript T denotes the
transposition. The left side of (37) can be rewritten as

W̃ ⊗ (dα)αT =

⎛
⎜⎜⎝

∑N
j=1 α2

j w̃1, j · · · 0
...

. . .
...

0 · · · ∑N
j=1 α2

j w̃n, j

⎞
⎟⎟⎠ ·

⎛
⎜⎝

d1
...

dn

⎞
⎟⎠

= � · d (38)

where � = diag(W (α ⊗ α)T ) is a diagonal matrix.
Substituting (38) into (37), one can obtain

d̂ = �−1 · (W̃ ⊗ EαT ) (39)

After the atom d has been updated, the coefficient can then
be updated by the similar way, calculating the derivative of
F(d, α) with respect to α and setting it to 0, as follows,

∂ F(d, α)

∂α
= dT ·

(
W̃ ⊗ (E − dα)

)
= 0 (40)

in which W̃ is defined the same in (37). (40) leads to

dT (W̃ ⊗ (dα)) = dT (W̃ ⊗ E) (41)

After some manipulations, the left side in (41) can be
rewritten as,

dT (W̃ ⊗ (dα)) =
(

n∑
i=1

w̃i1d2
i α1, · · · ,

n∑
i=1

w̃i N d2
i αN ,

)

= α · � (42)

where � = diag
( ∑n

i=1 w̃i1d2
i , · · · ,

∑n
i=1 w̃i N d2

i

) =
diag

(
W̃ T · (d ⊗ d)

)
is a diagonal matrix. Substituting (42)

into (41), then α is updated as,

α̂ = dT (W̃ ⊗ E) · �−1 (43)
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